Quantum Riddle Solved: Purple Bronze Discovery Unveils “Perfect Switch” for Future Tech

Purple Bronze Perfect Switch Illustration

Quantum scientists have discovered a phenomenon in purple bronze, a one-dimensional metal, that allows it to switch between insulating and superconducting states. This switch, triggered by minimal stimuli like heat or light, is due to ’emergent symmetry’. This groundbreaking finding, initiated by research into the metal’s magnetoresistance, could lead to the development of perfect switches in quantum devices, a potential milestone in quantum technology.

Quantum scientists have discovered a phenomenon in purple bronze that could be key to the development of a ‘perfect switch’ in quantum devices which flips between being an insulator and superconductor.

The research, led by the University of Bristol and published in Science, found these two opposing electronic states exist within purple bronze, a unique one-dimensional metal composed of individual conducting chains of atoms.

Tiny changes in the material, for instance, prompted by a small stimulus like heat or light, may trigger an instant transition from an insulating state with zero conductivity to a superconductor with unlimited conductivity, and vice versa. This polarised versatility, known as ‘emergent symmetry’, has the potential to offer an ideal On/Off switch in future quantum technology developments.

Representation of Emergent Symmetry

The image shows a representation of emergent symmetry, showing a perfectly symmetric water droplet emerging from a layering of snow. The ice crystals in the snow, by contrast, have a complex shape and therefore a lower symmetry than the water droplet. The purple color denotes the purple bronze material in which this phenomenon was discovered. Credit: University of Bristol

A 13-Year Journey

Lead author Nigel Hussey, Professor of Physics at the DOI: 10.1126/science.abp8948

Read More